

Keen to be Green

Increasing sustainability in composite resins manufacturing

Introducing AOC

Composite Resins and Solutions for Multiple End Use Markets

Transportation, Industrial, CIPP/Relining, Wind, Consumer, Building & Infrastructure, Marine

Keen to be Green Working Together as Composites Industry

General pressure on Greenhouse Gas Reduction

> Consumers want more Sustainable products

European Green Deal

> Interest for investing in Green Companies

> > Increasing cost of Electricity, Gas, Carbon

Desire for

Increased Product

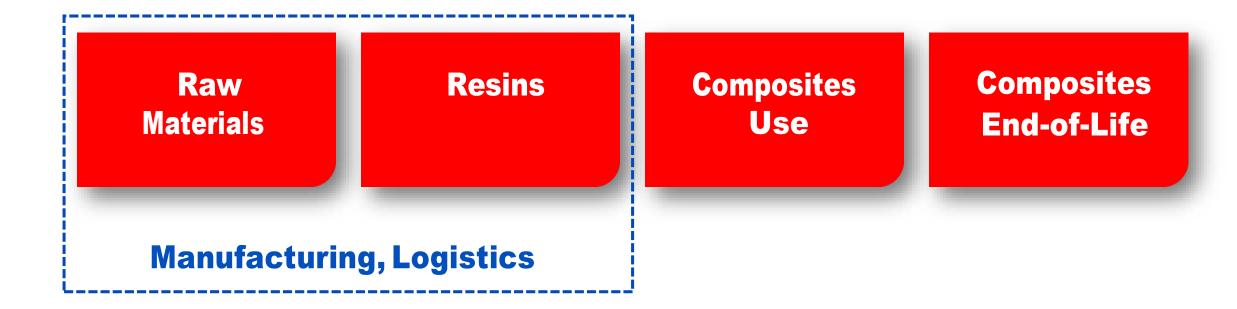
Circularity

AOC Trusted Solutions

Composites are Great in Sustainability

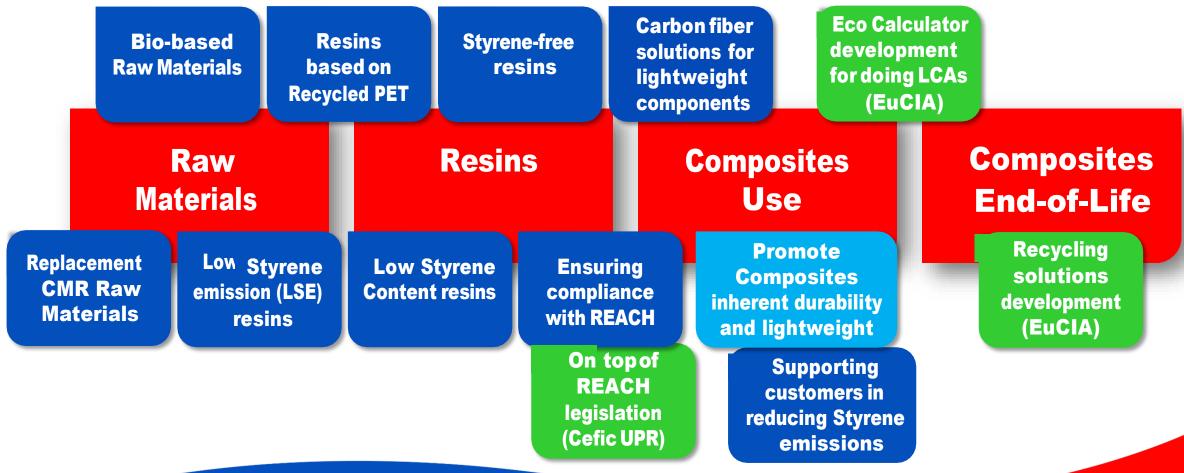
Composites save weight, reduce fuel and emissions, insulate heat, minimize maintenance

Enabling technologies for sustainable platforms like Wind energy, CIPP/Relining



Sustainability also key for long-term continuity of business operations in the entire value chain

- Keeping our people and our customers' employees healthy
- Minimizing waste generation and GHG emissions to the environment
- Saving cost associated with lower energy and water usage, and with lower GHG emissions



AOC Actively Involved in Increasing Sustainability Throughout the Supply Chain

Many Actions and Programs in Place

Multiple Programs to Improve Sustainability of Operations

Manufacturing, Logistics

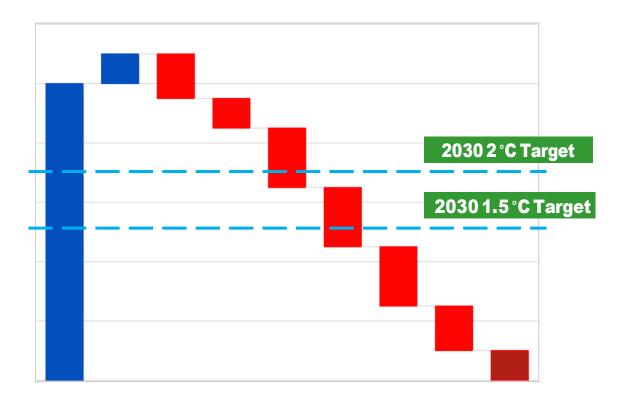
External Certification by EcoVadis

- EcoVadis is independent company providing Sustainability Ratings
- Have been rating AOC's ESG performance (Environment, Social, Governance)
- Comparing with Chemical Industrybenchmark
- Assessment based on evidence provided by AOC

Great Result:

- In 2021 rating AOC Europe received Gold Rating
- Within the Chemical industry, AOC was in the top 5 % (!)

Great Example: Saving Energy, Reducing Emissions in Filago Operations


- Project team to identify opportunities for reduction of energy GHG emissions Filago site
- Digital measurement devices installed in main power units
- External company to audit the operations
- Reducing energy and emissions:
 - Invested in a new Co-generator unit, supplying both electrical and thermal power to Filago site
 - Replaced light sources by energy-efficient LED lighting,
 - Installed pump inverters enabling to better regulate power in line with actual pump volume demand
 - Better heat insulation of steam and oil distribution pipes

Ongoing Actions for Reducing Greenhouse Gas Emissions

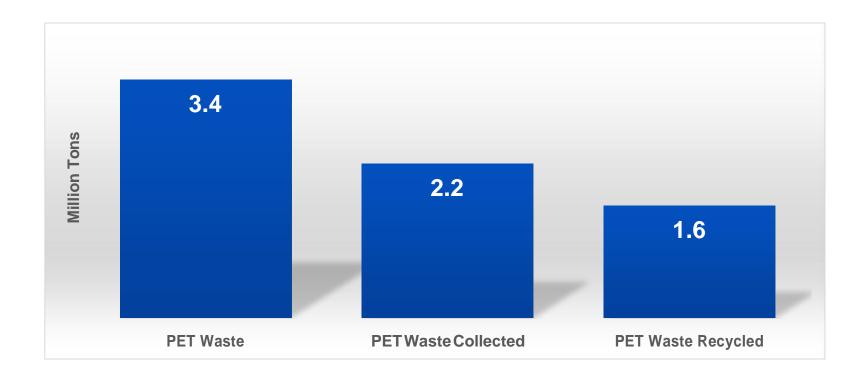
- Identification of GHG Emissions for Scope 1 (AOC Operations) and Scope 2 (Purchased Energy)
- Definition of measures and investments to reach 2 and 1.5 °C targets
- Also, what is required to close the gap to zero
- Clearly, long term focus is required
 - This includes looking at Scope 3 (Suppliers and Customers)

Introduction Next® Eco-label

- Sustainable resins from AOC
- For better identifying products that help to reduce emission of VOCs, use feedstock from bio-sources or recycled waste streams, or minimize environmental footprint
- Includes Styrene-free, bio-based, recycled raw materials (e.g. PET), VOC-free

Many Next[™] Products Already in Place

Increased Use of Bio-based Resins


- Reduce dependence on fossil-based raw materials
- Additional opportunities for sourcing security and in some cases performance improvement
- Bio-sourcing sometimes brings lower Eco-footprint, not always
- Our experience: customers like better performance
- But are reluctant to pay just for "bio feature"

Resins Based on RecycledPET

Opportunity in Europe to Better Use Recycled PET Valuable resource for making synthetic resins

Source https://www.icis.com/explore/resources/news/2020/12/30/10590184/insight-european-plastic-bottle-recycling-held-back-by-structural-shortage-of-feedstocks

Re-Use of rPET into Quality Resin Formulations

- Giving these valuable resources a second life
- Improving material circularity
- Reduction of consumption of virgin raw material, with associated reduction of energy and GHG emissions
- Meeting the performance requirements of our customers
- Creating sustainable products using AOC manufacturing technology
- Combination of post-consumer waste and industrial waste

Increasing Circularity Building Up Volume Since 2015

25 kTons of resins based on Recycled PET Equivalent to 105,000,000 PET bottles

Potential Changes for Styrene Occupational Exposure Limit (OEL) in Europe

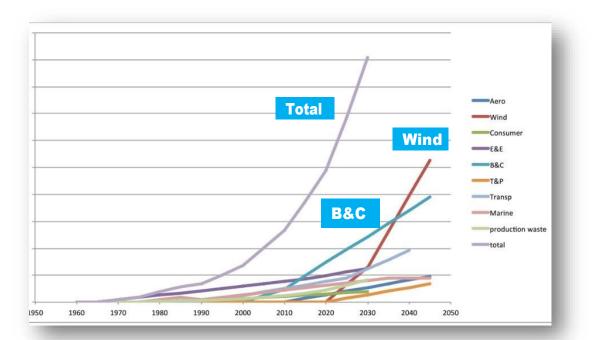
- Ranging from 10-100 ppm
- 20 ppm is most common
- 20 ppm is also the DNEL in Styrene dossier (Health-based)
- EU Commission and ECHA are to develop a single, EU-wide OEL for Styrene
 - Consultations are expected to start in 2022, completion anticipated in 2-3 years
- Cefic UPR committed to ensuring safe use of UP/ VE resins throughout supply chain
 - Support the industry in applying the correct safety precaution measures and technologies
 - Example: series of Safe Handling Guides available in several languages (<u>https://www.upresins.org/safe-handling-guides/</u>)

RESINS

Styrene Emissions Survey by Cefic UPR

- Cefic UPR is conducting a survey of UPR/VE resin uses among downstream Industrial and Professional users across EU
- Important for the UPR/VE industry to provide data supporting the safe use of styrenated resins across all uses supported under the REACH regulation
- Data will be used to build a picture of UP resin use in EU, to confirm safe use, and to identify areas where future support may be required
- Please participate in the Survey through this <u>link</u>

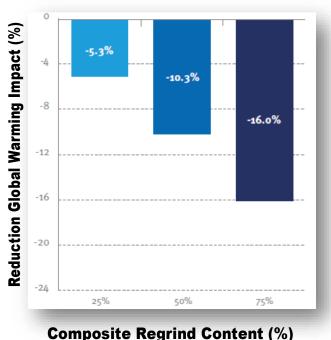
AOC Actively Participating in EuCIA Sustainability Working Group



- Estimating overall composite waste streams across markets and applications
- Define routes for true recycling
- Understand differences waste management legislation across Europe
 - Local legislation differs for cross-border transport and waste management
- Identify new technologies for Composites recycling
 - Make better use of material benefits at affordable cost

Composite Waste Predicted to Grow Significantly

- EuCIA is developing model based on GDP growth, application start, life expectation
- Different dynamics per industry and end-use market
- Still work in progress: data validation is ongoing with different stakeholders
- Composite waste only fraction of total waste streams



Recyclingthrough Cement Co-Processing is Commercial at Industrial Scale

- Re-use of valuable raw materials plus energy recovery: reduction of CO₂ footprint
- Easy to manage regrind, also in scale up
- Economically viable at present
 - Process in operation at Neowa and Holcim (D)
- So far only suitable for glass reinforced composites
- Early studies indicate positive LCA effects
- Desire to better recuperate composite waste stream
 - Combine into larger quantities

Size Reduction On-Site vs. Size Reduction at Recycling Operation

From Parts to Small Chunks to Cement

Using Composites in Cement Co-Processing can Make Cement Manufacturing Greener

- Use of composite waste in cement production reduces the amount of primary raw materials (replaced by glass fiber and other fillers in composites)
- Presence of CaO in glass fiber reduces the CO₂ emission during the cement production where normally CaCO₃ is used that needs to be de-calcinated (under the forming of CO₂)
- Use of the caloric value of the composite waste avoids the use of primary fossil fuels
- Intimate mixing of the fuel (resin) and the raw material (glass fiber + fillers) for the cement
 production increases efficiency of the fuel substantially and therefore reduces CO₂ emission

Mechanical Recycling Well Established, Yet Small in Volume

- Conversion of composite parts and components into fine fibers and powders
 - Already in use for over 30 years
- Re-use as small percentage in new formulations
- Also use in non-traditional Composites applications, with positive LCA effect
- Knowledge built up through Ercom experience
 - Commercial recycling company ~25 years in operation
- Difficult to manage powders and fibers: risk of creating waste
- Not competitive (yet) with use of virgin raw materials
 - E.g. in high speed thermoplastics compounding
 - $\bullet \ \ \mathbf{Re}\text{-use in critical applications like Wind Turbine blades not envisioned}$

New Recycling Solutions under Investigation, including Pyrolysis, Solvolysis

- Bringing back cured resins into new raw materials
- At different stage of investigation and scale up
- Key challenge is to handle fibers
 - $\boldsymbol{\cdot}$ Ensure fiber length and properties can be maintained
- $\boldsymbol{\cdot}$ Requires separation of liquid fractions that can be reused
- Potential recycling routes for carbon fiber
 - For glass not competitive (yet) with use of virgin raw materials
- LCA impact not yet understood (likely higher energy requirement)

Keen to be Green Working Together as Composites Industry Now

KOMPOSIT INDUSTRIENS BEDSTE BRANDS

Trusted Solutions

Contact us for more information

We will help you choose the right resin solution.

Tel.: + 45 4485 0500 web@monofiber.dk