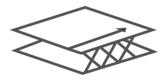


SAERfoam[®] is a lightweight structural core developed to be used in high-performance sandwich structures, manufactured using either vacuum infusion, RTM or compression.

SAERfoam combines strong glass reinforcement throughout the layer and a lightweight core to provide high strength and an excellent stiffness-to-weight ratio, which makes SAERfoam competitive in performance and price against traditional solutions.

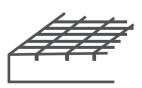
Thanks to a flexible and rapid manufacturing process, SAERfoam can be designed to maximize the mechanical performance of the parts to be produced by providing strength in single or multiple directions.

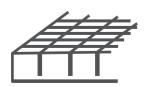
MAIN ADVANTAGES


- Excellent performance-to-weight ratio
- Light structural core (25% lighter than balsa wood) at affordable cost
- Easy and inexpensive to cut, groove, chamfer and process
- Cost-effective core solution when compared to balsa wood, PVC, PET & SAN cores
- Performance designed to meet individual critical needs
- No moisture absorption issues
- Excellent skin cohesion, reducing delamination in case of impact

PRODUCT RANGE

1 SAERfoam O


2 SAERfoam X



3 SAERfoam I

OPTIONS

Reinforcement throughout the layer: +/-45°

Thickness: 10 to 30 mm

Standard dimensions: 1200 x 1200 mm

For complex structural loads, mainly where shear strength and stiffness are requested

Reinforcement throughout the layer: +/-45°

Thickness: 10 to 30 mm

Standard dimensions: 1200 x 2400 mm

Strong mechanical properties in a single panel direction

Reinforcement throughout the layer: 90° + CSM 450g skins

Thickness: 10 to 40 mm

Standard dimensions: 1200 x 2400 mm *Suitable for compression resistance only*

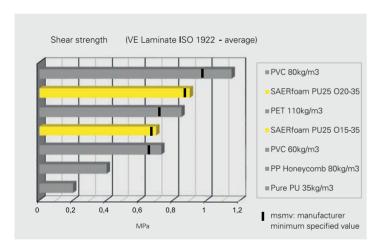
G: groved

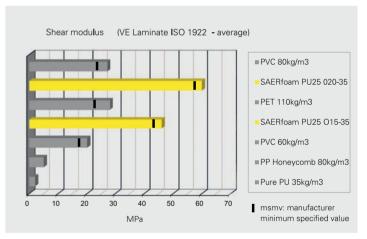
2x4mm / Pattern 25x25mm

D: drapable (grid scored)

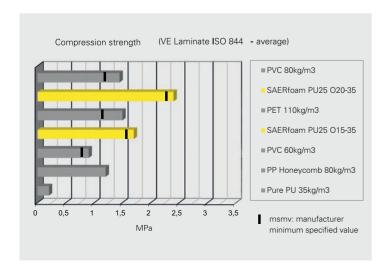
Knife cut / Pattern 25x25mm

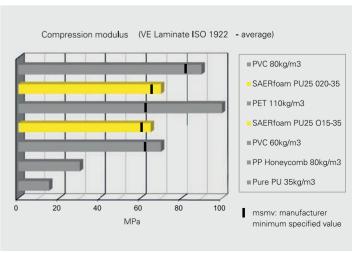
Fire retardant foam base: PIR M1 or Phenolic


Compatible LEO systems

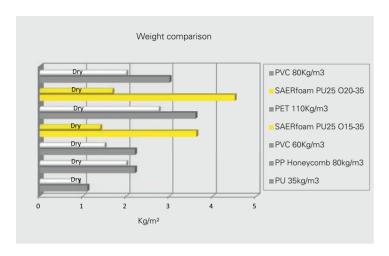

PRODUCT RANGE

Thickness	SAERfoam	Replacement PVC60 / PET90	Replacement PVC80 / PET110	
10 mm	O Grade	PU10 O10-30	PU10 O10-30	
	X Grade	PU10 X08-30	PU10 X08-30	
15 mm	O Grade	PU15 O10-30	PU15 O15-30	
	X Grade	PU15 X08-30	PU15 X10-30	
20 mm	O Grade	PU20 O15-30	PU20 O20-30	
	X Grade	PU20 X10-30	PU20 X10-30	
25 mm	O Grade	PU25 O15-35	PU25 O20-35	
	X Grade	PU25 X10-35	PU25 X10-35	
30 mm .	O Grade	PU30 O20-35	PU30 O25-35	
	X Grade	PU30 X10-35	PU30 X13-35	

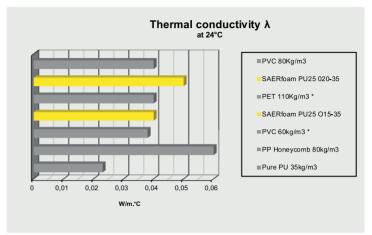

Visit our website to select your optimum SAERfoam: http://www.saertex.com/en/ products/foam-calculator


SHEAR properties benchmark comparing 25mm impregnated plain sheets

COMPRESSION perpendicular to the plane benchmark

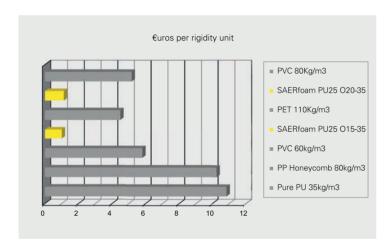


BENCHMARK


Weight comparison

Weight comparison takes into account PET and PVC drilled core (2 mm/25 mm pattern).

PP honeycomb and PU are all plain sheets and without skins.


Insulation factor

Cost comparison

The table below shows that SAERfoam has one of the best cost-to-rigidity ratios on the market.

The SAERfoam ratio is at least 4 times better than polymeric foams.

Compared products are impregnated with vinylester resin; the shear modulus is considered for rigidity.

EXCELLENT MECHANICAL PROPERTIES

The core in a sandwich structure will be stressed in different ways depending upon the structural application. While core shear stiffness and strength are the major performance criteria in sandwich constructions, other properties are also important. Indeed, a specifically designed SAERfoam will often be the best solution to provide the necessary structural properties while saving weight or money.

TECHNICAL SPECIFICATIONS	Testing norm	Unit	SAERfoam PU25 O15-35	SAERfoam PU25 O20-35
DENSITY	,	,		
Dry density	-	kg/m³	56	63
Infused density	-	kg/m³	145	180
Resin intake	-	kg/m²	2.3	3.1
PHYSICAL PROPERTIES (average values)				
Shear strength	ISO 1922	Мра	0.7	0.9
Shear modulus	ISO 1922	Мра	63	83
Compressive strength	ISO 844	Мра	1.7	2.4
Compressive modulus	ISO 844	Мра	60	79
Tensile strength	ASTM C297	Мра	120	1.0
Service temperature	-	°C	120°C	120°C
Thermal conductivity	at 24°C	W/m.°C	0.04	0.06
DIMENSIONS				
	Width	mm (+2)	1200	1200
Standard sheets	Length	mm (+2)	1200	1200
Standard SneetS	Thickness	mm (+0.5)	10 to 30	10 to 30
	Finish		Plain/Groove/Drapable	Plain/Groove/Drapable

TESTED SAERfoam®

Skin lay-up (each side): QX1200g+CSM450g (0° of QX external)

SAERfoam type: PU25mm with 1.5 bridges/cm² or

PU25mm with 2.0 bridges/cm²

Resin type: Vinylester Atlac E Nova MA 6215 from

DSM with 2.5% of catalyst PMEC

Butanox M50

Curing and post-curing: room temperature

Skins fiber fraction: 66% by weight

Engineered values for FEA model: data for laminates in

vinylester is available.

Mechanical properties may vary pending thicknesses. Please contact us to get the exact properties in your chosen grade, resin

and thickness.

The data provided gives average values based on our technology. Due to process variations and skin compositions, results may differ. Always seek advice from our specialists to identify which SAERfoam will work best in your process.

SAERfoam® VINYLESTER/POLYESTER SYSTEMS