

# LET'S TALK/ NEOMOULD

Tool Manufacturing made Easy

October 2017



# COMPOSITE TOOLS ARE BROADLY USED

- Flexibility of shape and surface quality
  - Gloss and matt finish, texture, smoothness
- Cost-effective for smaller production series
  - Up to 500-1000 parts per year
- Enables manufacturing of large components
  - Wind turbine blades, boats, façade panels, roofing/ BLOB
- Mostly used for Vacuum Infusion, Hand Lay-up and Spray-up, to some extent also for RTM
- Fast production of tooling (compared to steel)
- Potential integration of heating and cooling channels
- Track record of performance





#### COMPOSITE TOOLS USED FOR LOWER PRODUCTION VOLUMES

|   | Method                                  | Production volume                 | Tooling cost       | Other features                                                                                                                                                                          |
|---|-----------------------------------------|-----------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| / | Hand Lay-up                             | Low<br>< 500-1,000 parts/yr.      | Low to<br>Moderate | Simple processing, design flexibility, high level of part finishing required                                                                                                            |
|   | Spray-up                                | Low<br>< 500-1,000 parts/yr.      | Low to<br>Moderate | Simple processing, design flexibility, high level of part finishing required                                                                                                            |
|   | Vacuum<br>infusion                      | Low<br>< 500-1,500 parts/yr.      | Low to<br>Moderate | Suitable for complex shapes and large components (up to 100 m), medium level of part finishing required                                                                                 |
|   | RTM Low to Moderate 500-5,000 parts/yr. |                                   | Moderate           | Faster production, design flexibility, complex shapes possible, smooth surfaces, medium level of part finishing required                                                                |
|   | SMC<br>BMC                              | High<br>500-100,000<br>parts/ yr. | High               | Better part-to-part reproducibility, design flexibility,<br>complex shapes possible, outstanding finished<br>surfaces, minimal part finishing cost                                      |
|   | Metal                                   | Very high<br>> 100,000 parts/yr.  | High               | Excellent part-to-part reproducibility, moderate<br>design flexibility, outstanding finished surfaces<br>(minimal part finishing cost), cost competitive at<br>larger production series |



#### FREEDOM TO DEVELOP UNIQUE SHAPES AND SURFACE QUALITIES



# NEOMOULD® 2017-S-1 MAKES TOOLMAKING EASY

- Robust and easy processing
- Zero-shrinkage feature enables to mirror plug surface and dimensions
- Excellent application on vertical surfaces without sagging
- Optimized curing characteristics even for making thick parts
- Once cured, resisting temperatures up to 80 °C
  - Note: resistance to styrene at such temperature requires also high quality tooling gelcoat and use of a tie coat





# TOOLMAKING STEP BY STEP

- 1. Preparation of materials
- 2. Cleaning of plug with (if required) subsequent polishing
- 3. Cover surface with mold release agent, with subsequent evening out for uniform surface finish
- 4. Application of gelcoat (brush or spray)
- 5. Application of resin rich layer
  - Using surface veil or Tie coat
- 6. Lamination of structural laminate
- 7. Integration of supporting structure after curing several layers applied
- 8. Part cure
- 9. Release tool from plug





# BEFORE YOU START

- Check temperature conditions in workshop, the plug and for the materials to be used to be at 18 – 22 °C
- Check that all materials requested are present in the workshop
  - Please keep in mind that materials taken from outside or from cold storage may require
    2–5 days to reach workshop temperature
- Homogenize pails and drums of tooling gelcoat and Neomould® 2017-S-1 resin thoroughly prior to taking out any quantity
- Check that sufficient soft pads are available for mold release agent application and for polishing



### PLUG CLEANING, POLISHING AND PREPARATION



### RECOMMENDATIONS FOR PLUG PREPARATION

- Check the entire plug surface for defects
  - Remember that even tiny defects will be mirrored in the mold and subsequently in all parts manufactured from the mold
  - If required, repair any defects
- If desired, polish the surface until required gloss is obtained
- Check with manufacturer of plug to determine suitable cleaning agents for plug materials used
- If using solvents give the plugs sufficient time to dry so mould release sticks well afterwards
  - Avoid excessive amounts of solvents
  - Use relatively dry cleaning pads
  - If the plug is deep (e.g sink, bath tub), please take care of sufficient ventilation
- If the plug will be used next day, please cover plug and check next day before starting gelcoat application





## APPLICATION OF MOLD RELEASE



# REMOVAL EXCESS MOLD RELEASE



### RECOMMENDATIONS FOR MOLD RELEASE APPLICATION

- Select right mold release agent so it will give the expected surface finish
- Apply the mold release agent in uniform layer(s)
  - When you see uneven layers, check the application pad
  - If saturated with mold release agent, change for a new pad
- Let mold release agent layer(s) settle according to supplier recommendations
  - Deep plugs (e.g. sinks, bath tubs) require significant air circulation
- After applying the final mold release layer, let it settle for the time indicated by the supplier before moving to polishing
- When polishing, regularly check the polishing pad
  - If it looks dirty use a new part of the pad or use a new one
- After evening out the mold release agent, check the entire surface if the gloss is uniform and as desired
  - It is recommended to inspect from several angles





## GELCOAT APPLICATION (BRUSH, SPRAY)





# GELCOAT SELECTION

- BÜFA Tooling Gelcoats are recommended
- Available in 4 colors, for contrast with gelcoat color of final component

| Product name        | BÜFA-VE-Tooling-<br>Gelcoat-S | BÜFA-VE-Tooling-<br>Gelcoat-H | BÜFA-Conductive –<br>Tooling GC-S |
|---------------------|-------------------------------|-------------------------------|-----------------------------------|
| Application         | Spray                         | Brush                         | Spray                             |
| Resin base          | VE                            | VE                            | Hybrid                            |
| Styrene content (%) | 40                            | 40                            | 49                                |
| Peroxide            | 2 % MEKP                      | 2 % MEKP                      | 2 % MEKP                          |
| Gel time (min)      | 14                            | 14                            | 15                                |
| HDT (°C)            | 130                           | 110                           | 120                               |





### RECOMMENDATIONS FOR GELCOAT APPLICATION BY BRUSH

- Select a wide and thick brush for allowing longer paint strikes
  - Apply gelcoat strip by strip do not patch, but long movements
  - Paint in the same direction and slightly overpaint
- Check the brush for loose fibers, and eliminate
  - Do use new brushes not cleaned ones
- Prepare for application of 400 g/m<sup>2</sup> of wet gelcoat in one layer
- Weigh the gelcoat quantity required
  - Allows to keep control of the amount used during painting
- Use 1.5-2.0 weight % of peroxide, mix thoroughly with gelcoat
- In the beginning, check thickness of the gelcoat at multiple spots
  - 350 microns wet gelcoat minimum
- Typically surface quality is less even because of use of brush
- Let the first layer cure well and apply a second layer in same wet weight

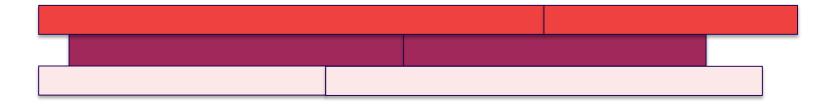




#### RECOMMENDATIONS FOR GELCOAT APPLICATION BY SPRAYING

- Check if equipment works properly
- Select the right nozzle
  - Tooling gelcoat may be thicker than normal gelcoats
  - Selecting right nozzle will avoid inclusion of excess air
- Adjust the required pressure
- Adjust the peroxide content = 1.5-2.0 weight %
- Check the spray pattern on a carton prior to start painting
- Ensure that you can move/ walk freely around the mold
- Paint in the same direction, move along the mold following the shape of the plug to keep distance all time
  - Required for uniform thickness distribution
- Apply 700 800 g VE Tooling gelcoat in one go
- In the beginning, check thickness of the gelcoat at multiple spots
  - Use sufficient overspray in order to ensure uniform gelcoat distribution and thickness






#### PREPARATION OF GLASS Best to cut in advance for efficient processing



#### RECOMMENDATIONS FOR GLASS FIBER PREPARATION

- Prepare glass fiber mat in line with plug dimensions/ laminate design
- Avoid overlay areas of mat layers
  - These may results in thickness variations and uneven curing
- Prepare the glass fiber layers according the panned laminating sequence







## APPLICATION OF FIRST LAYER OF NEOMOULD® 2017-S-1



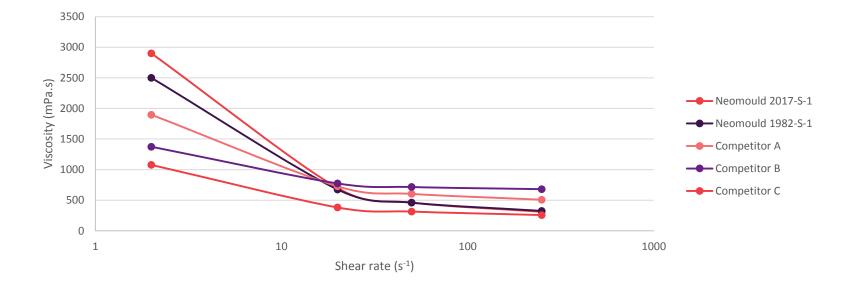
#### RESIN APPLICATION THROUGH HAND LAY-UP

- Prepare only the resin amount to be used within 15 minutes
  - Make sure that the pail or drum used for the preparation is mixed thoroughly
- Apply 1.5-2 weight % of MEK Peroxide
  - Adjust in line with workshop temperature
- Use large rollers for gentle resin application, avoiding damage to gelcoat and glass fiber mat
- Apply a rich resin layer before laying up the mat
- Roll over softly and apply more resin if needed, avoid air bubble enclosure
- Ensure air bubble free application before laying down more glass fiber mat
- Apply layer by layer and do not apply different number of layers on different parts of the plug
  - For avoiding uneven cure and part warpage
- Use right shop temperature
  - 15 °C is absolute minimum for 8 layers, 18 °C for 4 layers
  - Keep in mind to adjust MEKP level





### RESIN APPLICATION THROUGH SPRAY-UP


- Make sure that pail or drum located on the machine is thoroughly mixed
- Apply 1.5-2 weight % of MEK Peroxide
  - Adjust in line with workshop temperature
- Check quantities of resin and glass fiber and check spray pattern i.e. distance chopped glass resin stream
- Apply a thin resin layer before starting the chopper
- In the beginning apply all over 2-3 mm thick layer only and laminate avoiding air bubbles
- Keep distance of chopper gun to the mold surface
- Avoid having different layer thicknesses to gel and cure in different parts of the plug
  - Uneven cure may result in lower surface quality and warpage
  - In huge plugs apply specific thickness all over the plug within the normal gel time, rather than a larger thickness on a single spots





#### EXCELLENT RESISTANCE TO SAGGING NEOMOULD® 2017-S-1 HAS HIGHEST VISCOSITY AT LOW SHEAR

- Easy application on vertical surfaces
- Allows application up to 12 layers







## RIGHT CURING BOTH IN THICK AND THIN LAYERS

• Temperature development of Neomould 2017-S-1 measured in laminate on mold side (2 % MEKP)

| Laminate thickness | 25 °C | 20 °C | 17 °C           |
|--------------------|-------|-------|-----------------|
| 4 mm               | 32    | 30    | Not recommended |
| 8 mm               | 42    | 40    | 40              |
| 10 mm              | 52    | 50    | 50              |

• Competitor products showed in all test conditions 5-20 °C higher peak temperature compared to Neomould® 2017-S-1





#### APPLICATION OF FIRST CSM LAYER Subsequent rolling for de-aeration



#### INTEGRATION OF THERMOCOUPLE If desired for measuring peak exotherm



# RECOMMENDATIONS FOR PART BUILD-UP

- Behind the gelcoat two different types of layers may be applied
  - Surface veil bringing superior smoothness
  - VE based Tie coat bringing both superior smoothness and styrene resistance
- Glass mat types
  - Use CSM powder bond (easier to dissolve in styrene vs. emulsion bond), but slightly less stiff in the corners
  - In Hand lay-up use maximum 8-12 layers of 450 g/m<sup>2</sup> CSM in one lamination step, keeping in mind the Tg of the plug surface
  - In Spray up mind dont make layers too thick for avoiding air bubble enclosure
- Avoid the application of Woven Roving layers before having applied at least 4 CSM layers or 1800 g chopped glass fibers
  - If not, this may negatively affect surface quality (woven rovings visible)





### APPLICATION ADDITIONAL CSM LAYERS







### BROWN RESIN COLOUR WHEN UNCURED

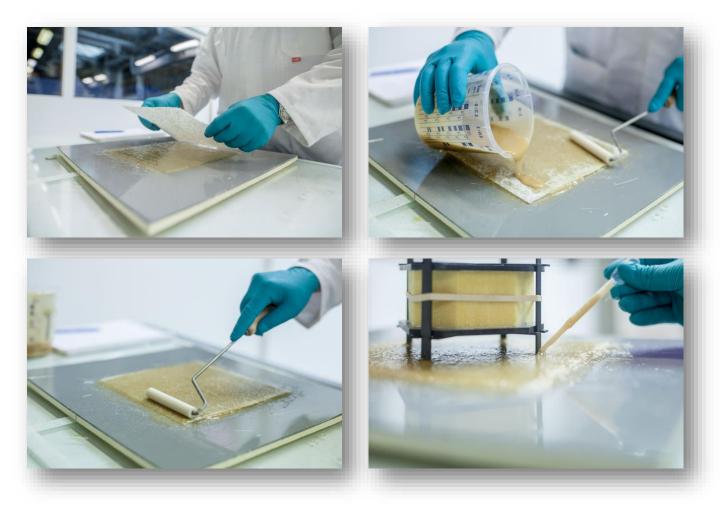


# TURNING WHITE WHEN CURED



#### SEPARATION PLUG AND TOOL

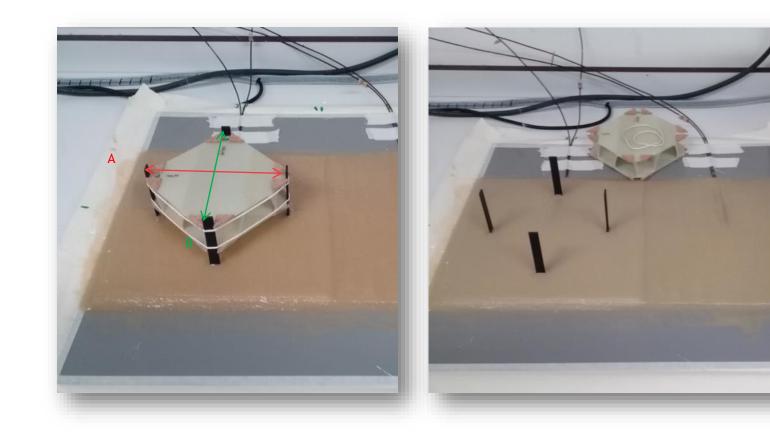



## THE END RESULT Tool surface mirrors plug surface



#### SHRINKAGE MEASUREMENT DEVICE



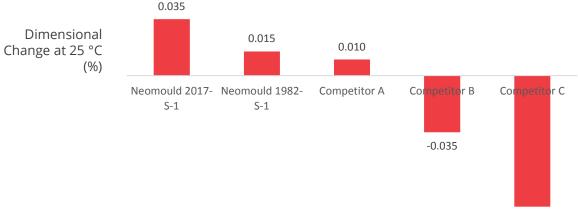

### SHRINKAGE MEASUREMENT SET-UP







# DISTANCE MEASUREMENT BETWEEN STRIPS








### NEOMOULD® 2017-S-1 HAS UNIQUE DIMENSIONAL SHRINKAGE PERFORMANCE

- At 25 °C resin has slight expansion
- At less favorable temperature conditions, shrinkage is still zero
- Best guarantee to mirror the surface of the plug



-0.081





#### NEOMOULD 2017-S-1 IS IMPROVEMENT VS. PREVIOUS NEOMOULD RESINS

- Improved thixotropic properties for better application performance
  - Easier to make thicker layers in one go
- Optimized development of exotherm reaction
- "Negative" shrinkage, reduced risk when working in unfavorable temperature ranges





# NEOMOULD® 2017-S-1 MAKES TOOLMAKING EASY

- Robust and easy processing
- Zero-shrinkage feature enables to mirror plug surface and dimensions
- Excellent application on vertical surfaces without sagging
- Optimized curing characteristics even for making thick parts
- Once cured, resisting temperatures up to 80 °C





# LET'S TALK/